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1. Introduction

In this paper we aim to develop some of the theory behind topological data
analysis (TDA) and its main tool, persistent homology. We start from the usual
scenario with a point cloud in n-dimensional Euclidean space and follow the basic
work flow in TDA: that is, to create a nested sequence of simplicial complexes
using either the Čech or Rips complex. Then, we compute the persistent homology
of this sequence and quantify the birth and death of homological features in a
persistence diagram. We give an example using the TDA package in R. One of the
pillars that makes TDA possible is the stability theorem: we explain this and work
out a simple example verifying the theorem. Finally, we discuss how one could
go about applying statistical methods to quantify the uncertainty associated with
persistence diagrams, via a method given by Fasy, et al. We continue our example
by computing confidence bands for persistence diagrams.

2. Simplicial Complexes

We would like to first note that nearly all of the discussion over the next four
sections come from Edelsbrunner and Harer’s Computational Topology [EH10].

There are many ways to represent a topological space but in practice and for our
purpose we use simplicial complexes as the data structure. Simplicial complexes are
just sets of what are called simplices, that follow some intuitive rules. A simplex
(or plural simplices) is a generalization of the notion of triangle or tetrahedron to
higher dimensions. Concretely this is defined as follows.
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What we would like to do is define a k-simplex, in order to do so we need
a few more definitions to get us there. Let u0, ..., uk be points in Rd. A point

x =
∑k
i=0 λiui with λi ∈ R, is an affine combination of the ui if λi sum to

1. The affine hull is the set of affine combinations. It is a k-plane if the k + 1
points are affinely independent, by which we mean that any two affine combina-

tions, x =
∑k
i=0 λiui and y =

∑k
i=0 µiui are the same iff λi = µi for all i. The

k + 1 points are affinely independent iff the k vectors ui − u0 for 1 ≤ i ≤ k are
linearly independent. In Rd we can have at most d linearly independent vectors
and therefore at most d+ 1 affinely independent points.

An affine combination, x =
∑k
i=0 λiui is a convex combination if all λi are non-

negative. The convex hull is the set of convex combinations. A k-simplex is the
convex hull of k+1 affinely independent points, defined as τ = conv{u0, .., uk}. We
can say ui span τ . Then a vertex is a 0-simplex, edge is 1-simplex, triangle is a
2-simplex and tetrahedron is a 3-simplex.

A face of a k-simplex is the convex hull of a non-empty subset of the ui and it is
proper if the subset is not the entire set. Since a set of size k + 1 has 2k+1 subsets
including the empty set, a k-simplex has 2k+1 − 1 faces, all of which are proper
except for τ itself.

The interior of a k-simplex σ is σ minus all of its proper faces. This is equivalent
to the statement that x is in the interior of σ if and only if all its coefficients λi are
positive. It follows from this that every point x ∈ σ is in the interior of exactly one
face of σ.

We sometimes write τ ≤ σ if τ is a face and τ < σ if it is a proper face of σ.

Now that we have a definition of k-simplex and face of a simplex, we can define
a geometric simplicial complex.

Definition 2.1 (Geometric Simplicial Complex). A geometric simplicial complex
is a finite collection of simplices K such that

(1) σ ∈ K and τ ≤ σ implies τ ∈ K.
(2) σ, τ ∈ K implies σ ∩ τ is either empty or a face of both.

The dimension of K is the maximum dimension of any of its simplices. In addi-
tion, we define the underlying space of a geometric simplicial complex |K| as simply
the union of all its simplices in the space it lives in, Rn. The vertex set of K, VertK
is simply the collection of all 0-simplices of K.

There is a way to generalize the idea of a simplicial complex without talking
about Rn. The idea is that the simplices in a simplicial complex are completely
determined by their vertices. So instead of defining a simplex as the convex hull
of affinely independent points, we can instead define a simplex as simply a set of
points. We give the definition of an abstract simplicial complex below:

Definition 2.2. An abstract simplicial complex is a collection of finite sets A such
that α ∈ A, β ⊆ α implies β ∈ A.
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We note that condition (2) of the definition for a geometric simplicial complex
is no longer necessary here, because it is satisfied by construction. We define a
geometric realization of an abstract simplicial complex as simply a geometric sim-
plicial complex K that has all the same simplices as A and also satisfies condition
(2) of a geometric simplicial complex.

Now that these definitions are out of the way, we can talk about simplicial maps.
First, we define barycentric coordinates. Recall from earlier that each point x in a
simplex σ belongs to the interior of one face in σ. In particular, if K is a simplicial

complex with vertices u0, · · · , un and σ = conv{u0, · · · , uk}, then x =
∑k
i=0 λiui.

Then the barycentric coordinates of x are

bi(x) =

{
λi, 0 ≤ i ≤ k
0, k < i ≤ n

So this gives us a way to describe the position of a point in |K| given the vertices
of the simplicial complex K. Now, we can define a vertex map.

Definition 2.3 (Vertex Map). Let K,L be simplicial complexes. A map ϕ :
VertK → VertL is a vertex map if it has the property that vertices of a simplex in
K map to vertices of a simplex in L.

Note that ϕ need not be injective: the vertices of a 3-simplex could be mapped to
a single 0-simplex without violating the vertex map condition. What a vertex map
between K and L does is induce a map between the simplices of these complexes.
This is called a simplicial map.

Definition 2.4 (Simplicial Map). Let K, L be simplicial complexes and ϕ be a
vertex map. Then we define a simplicial map f : |K| → |L| as

f(x) =

n∑
i=0

bi(x)ϕ(x)

We generally drop the fact that we are talking about the underlying space and
simply say f : K → L. The idea with the simplicial map is that it maps simplices
to other simplices of the same or lower dimension.

3. Homology

In order to talk about persistent homology, we first have to talk about homol-
ogy. The aim of topological data analysis and in particular persistent homology is
to approximate the underlying manifold that our data points have been sampled
from. Persistent homology gives us a way to summarize the topological features of
our data, these topological features are then encoded in what is called a persistence
diagram. We will cover simplicial homology with Z2 coefficients, as this is what we
will need.

Suppose we have a simplicial complex K. Then we define p-chains:

Definition 3.1 (Group of p-chains). If K is a simplicial complex and p ∈ Z, a
p-chain is a formal sum of p-simplices of K, with coefficients in Z2. That is,

σ =

k∑
i=1

aiσi
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where each ai ∈ Z2 and σi is a p-simplex. We denote the collection of all p-chains
of a simplicial complex Cp, which turns out to be an abelian group under addition.

Since each coefficient is either 0 or 1, we can think of a p-chain as a subset of
p-simplices taken from the simplicial complex. While this idea doesn’t generalize to
Z coefficients, it is convenient to visualize homology like this. So for any simplicial
complex K, we have a collection of chain groups C0, C1, . . . , Cn. We now want to
define the boundary operator, ∂p:

Definition 3.2 (Boundary Operator). If K is a simplicial complex, we define the
boundary operator ∂p : Cp → Cp−1 on a p-simplex σ = [u0, . . . , up] as

∂pσ =

p∑
k=1

[u0, . . . , ûk, . . . , up]

where ûk means that this particular element has been removed from the simplex.
The boundary operator on a p-chain extends linearly: ∂p(σ + τ) = ∂pσ + ∂pτ .

We note that the condition that the boundary operator be linear means that ∂p
is a group homomorphism from Cp to Cp−1. This forms something we call a chain
complex: it is a sequence of chain groups connected by boundary homomorphisms.

0 C0 C1 C2 · · ·
∂0 ∂1 ∂2 ∂3

Here, by 0 we mean the trivial group with a single element, 0.

Now, we cover the p-cycle and p-boundary groups, which are subgroups of the
p-chain group.

Definition 3.3 (Groups of p-cycles and p-boundaries). A p-cycle is a p-chain with
empty boundary, ∂pσ = 0. The collection of all p-cycles is denoted Zp, and is a
subgroup of Cp.

A p-boundary is a p-chain that is the boundary of a p+ 1-chain, σ = ∂p+1τ, τ ∈
Cp+1. The collection of all p-boundaries is denoted Bp, and is again a subgroup of
Cp.

Before we proceed, we have an extremely important lemma. This lemma is what
makes homology possible!

Lemma 3.4 (Fundamental Lemma of Homology). ∂p∂p+1σ = 0 for every integer
p and every p+ 1-chain σ.

We will not go over the proof of this lemma here, but what this means is that
every p-boundary is a p-cycle: i.e. Bp is a subgroup of Zp. We can see that this
is true by observing that if we have some p-boundary, then by the Fundamental
Lemma of Homology, its boundary will be 0. A diagram of this relationship is
shown below.
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Figure 1. A diagram of the subgroup relations of Cp, Zp, and Bp
along with the boundary homomorphisms that connect them.

With these definitions, we can now state what the homology groups are.

Definition 3.5 (Homology Groups). The pth homology group is the pth cycle group
modulo the pth boundary group, Hp = Zp/Bp. The pth Betti number is the rank
of this group, βp = rankHp.

The rank of a group is simply the smallest number of generators one needs in
order to generate the entire group. We note that Bp is a normal subgroup of Zp
since Zp is abelian, so the quotient group is well defined.

Before we move on to persistent homology, we want to note an interesting con-
sequence of the homology groups. Suppose we have a simplicial map f : K → L.
It takes simplices of K to simplices in L. We can extend this to a map f# be-
tween p-chains of K and p-chains of L. Specifically, if σ =

∑
aiσi ∈ Cp, then

f#(σ) =
∑
aiτi, where τi = f(σi) if dim f(σi) = p and τi = 0 if dim f(σi) < p.

It turns out that f# actually commutes with the boundary operators of K and L,
respectively: f# ◦ ∂K = ∂L ◦ f#. This fact is somewhat nontrivial to prove since
simplices in K can be sent to simplices of a lower dimension in L.

The point of noting all of this is that because f# commutes with the boundary, we
can conclude that it takes cycles to cycles and boundaries to boundaries. Therefore,
it induces a map between the homology groups of K and L:

Definition 3.6 (Induced Map). Suppose f : K → L is a simplicial map. Then it
induces a map f∗ : Hp(K)→ Hp(L) between the pth homology groups by

f∗(σ +Bp(K)) = f#(σ) +Bp(L).

Note that this map is well defined precisely because f# takes cycles to cycles and
boundaries to boundaries. This is actually very surprising: if we have any simplicial
map f between simplicial complexes, we automatically get a map between their
homologies! With this, we can now move on to persistent homology.

4. Persistent Homology and Persistence Diagrams

Normally, we talk about the homology of a single, static object. If we instead
want to analyze how the homology of an object changes over time, what tools do
we need to do this? It turns out there is a way to do this if you have something
called a filtration of simplicial complexes. Once you have such an object, you
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can find its persistent homology groups, which tell you about how the homological
features evolve and die over time. This information can be expressed in a persistence
diagram, which encodes how long a particular homological feature lasted as a point
on a 2D grid. To start off, we have some definitions.

Definition 4.1 (Filtration). A filtration is an indexed set Si of sub objects of a
given algebraic structure S, with the index i running over some totally ordered
index set I, subject to the condition that if i, j ∈ I, then

i ≤ j =⇒ Si ⊆ Sj .

Conceptually, we can imagine a filtration as taking an object and adding pieces
onto it to get a bigger object, labeling these snapshots Si. We can also think of
a filtration as a sequence of spaces Si with inclusion maps f i,j : Si → Sj where
i < j between the spaces. Now, we want to concentrate on a filtration of simplicial
complexes

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

and the simplicial inclusion maps f i,j : Ki → Kj . Recall that a simplicial map
f : K → L induces a corresponding map between the pth homology groups: f∗ :
Hp(K) → Hp(L). Therefore, we can use the inclusion maps to induce a sequence
of homology groups

0 = Hp(K0)→ Hp(K1)→ · · · → Hp(Kn) = Hp(K)

where each homology group is connected to the next by the induced group homo-
morphisms f i,jp : Hp(Ki) → Hp(Kj). Now we can define the persistent homology
groups.

Definition 4.2 (Persistent Homology Groups). The pth persistent homology groups
are the images of the homomorphisms induced by inclusion, Hi,j

p = im f i,jp , for
0 ≤ i ≤ j ≤ n. The corresponding pth persistent Betti numbers are the ranks of
these groups, βi,jp = rankHi,j

p .

Essentially, what Hi,j
p tells you is which homological features in Ki persisted

until Kj : hence the name persistent homology. Formally, if γ ∈ Hp(Ki), we say γ
is born at Ki if γ /∈ Hi−1,i

p , or in other words γ wasn’t in Hp(Ki−1), but appeared

in Hp(Ki). We say that if γ was born at Ki, that it dies entering Kj if f i,j−1(γ) /∈
Hi−1,j−1
p but f i,j(γ) ∈ Hi−1,j

p , or in other words, γ was still a significant feature at
Hp(Kj−1), but was absorbed back into the original feature at Hp(Kj). Note that
the rules for when a feature is born and dies obeys something called the elder rule:

Definition 4.3 (Elder Rule). At a juncture, the older of the two merging paths
continues and the younger path ends.

We can see that if one feature is born earlier than another feature, then when
they become part of the same homology group, it is the older feature that we say
dies first.

Now that it makes sense to talk about homological features being born, persist-
ing, and dying, we can start to talk about persistence diagrams. What a persistence
diagram allows us to do is summarize the details of the persistent Betti numbers of
a filtration.
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Definition 4.4 (Persistence Diagrams). Define µi,jp to be the number of homology
classes that are born at Ki and die entering Kj . Then the pth persistence diagram
of the filtration is the multiset of points (i, j) with multiplicity µi,jp along with all
the points (i, i) on the diagonal with infinite multiplicity.

One can recover the persistent Betti numbers from the persistence diagram due
to the following lemma:

Lemma 4.5 (Fundamental Lemma of Persistent Homology). Let ∅ = K0 ⊆ K1 ⊆
· · · ⊆ Kn = K be a filtration. For every pair of indices 0 ≤ k ≤ l ≤ n and every
dimension p, the pth persistent Betti number is βk,lp =

∑
i≤k
∑
j>l µ

i,j
p .

So we can get the actual Betti number by looking at the upper left quadrant of
the persistence diagram, starting from (k, l), and counting the number of points in
that region to get the Betti number.

We can now generalize the definitions we made previously to a simplicial complex
K and a real valued map f : K → R that satisfies a special condition called
monotonicity.

Definition 4.6. A function f : K → R is monotonic if when σ, τ ∈ K,

σ ≤ τ =⇒ f(σ) ≤ f(τ).

A function being monotonic is equivalent to the sublevel set f−1(∞, a] always
being a subcomplex of K. What this means in practice is that the sublevel sets of
f form a filtration! In other words, we have a series of simplicial complexes

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

where each Ki corresponds to a specific sublevel set of f . Therefore, it makes sense
to talk about the persistent homology and persistence diagrams of f by taking
the persistent homology of this filtration. We denote the persistence diagram of a
monotonic function like this Dgmp(f), as thinking about persistent homology this
way will be very useful for the upcoming stability theorems.

5. Stability Theorems

Before we can talk about the stability theorems, we just need to review what
the L∞ distance is.

Definition 5.1 (L∞ Distance). Suppose x = (x1, x2) and y = (y1, y2). Then the
L∞ distance between the two points is

‖x− y‖∞ = max{|x1 − y1|, |x2 − y2|}.
Suppose f, g : X → R are functions. Then the L∞ distance between these functions
is

‖f − g‖∞ = sup
x∈X
{|f(x)− g(x)|}.

What the stability theorems are is a way to quantify the idea that small changes
made to a function f lead to small changes in the corresponding persistence diagram
Dgmp(f). But what is a small change in the persistence diagram? In order to
quantify this, we will define something called the bottleneck distance between two
persistence diagrams.
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Definition 5.2 (Bottleneck Distance). Let X and Y be two persistence diagrams.
To define the distance between them, consider bijections η : X → Y and record
the supremum of the distances between corresponding points for each. Then the
bottleneck distance between the diagrams is defined as

W∞(X,Y ) = inf
η:X→Y

sup
x∈X
‖x− η(x)‖∞

We can think of the bottleneck distance between two diagrams as drawing a
box with side length 2W∞(X,Y ) around each point in X such that it includes at
least one point of Y . Note that the points of X and Y include the points on the
diagonal, so these can be used in the pairing between the two diagrams. This idea
is illustrated in the diagram below, where the white points are points of X and the
black points are points of Y .

Figure 2. A visualization of the bottleneck distance between the
diagrams X (in white) and Y (in black). Note how the points on
the diagonal are used.

The reason this distance between persistence diagrams is defined this way is
that it allows the stability theorems to become possible. Now we can state the first
stability theorem:

Theorem 5.3 (Stability Theorem for Filtrations). Suppose K is a simplicial com-
plex and f, g : K → R are monotonic functions. Then for each dimension p, the bot-
tleneck distance between the diagrams X = Dgmp(f) and Y = Dgmp(g) is bounded
from above by the L∞ distance between the two functions, W∞(X,Y ) ≤ ‖f − g‖∞.

This is quite a powerful result, and gives us the sense in which small changes to
the function cause small changes in the persistence diagram. To give an idea of the
proof, we utilize the straight line homotopy between f and g, ft = (1−t)f+tg, 0 ≤
t ≤ 1. In particular, ft is monotonic for any t, so we can consider the space of per-
sistence diagrams of ft for 0 ≤ t ≤ 1. If we consider the paths that points in the
persistence diagrams trace out in this space, it is a polygonal path with one end-
point at the persistence diagram of f and reaching up to a point in the persistence
diagram of g or merging with the diagonal of the diagram earlier than that. We
can use this to finally derive that the length that this path traces out is bounded
by the L∞ distance between the two functions.

It turns out that this idea can be generalized to not just simplicial complexes and
monotonic functions, but triangulable spaces and something we will call a “tame”
function. First, what is a triangulable space?
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Definition 5.4 (Triangulation). A triangulation of a topological space X is a sim-
plicial complex K that is homeomorphic to X, that is there is a homeomorphism
h : K → X. If a space X has a triangulation, we say X is triangulable.

We can redefine many of the ideas for persistent homology in terms of a triangu-
lable space instead of a simplicial complex. Suppose f : X→ R is a function. Then
in a similar vein to monotonic functions, we can create a filtration using the sublevel
sets of f , Xa = f−1(−∞, a]. Once again, we have inclusion maps fa,b : Xa → Xb
for a ≤ b, which induce group homomorphisms fa,bp : Hp(Xa) → Hp(Xb) between

the homology groups of the sublevel sets. We once again define Ha,b
p as the image

of the map fa,bp , and βa,bp to be the rank of Ha,b
p .

In order to define what a tame function is, we first need to define what a homo-
logical critical point is.

Definition 5.5 (Homological Critical Point). A point a ∈ R is a homological critical
point if there is no ε > 0 for which fa−ε,a+εp is an isomorphism for each dimension
p.

For fa,bp to be an isomorphism means that the homology of the sublevel sets did
not change from a to b, so a homological critical point is simply a point where the
homology changes. Now, we can define a tame function.

Definition 5.6 (Tame Function). A function f is tame if it has only finitely many
homological critical values and all homology groups of all sublevel sets have finite
rank.

The requirements here are very weak: it is only in theoretical cases that the
tameness condition will fail. We can now state the more general analogue of the
stability theorem for triangulable spaces:

Theorem 5.7 (Stability Theorem for Tame Functions). Suppose X is triangulable
and and f, g : X→ R are tame functions. Then for each dimension p, the bottleneck
distance between the diagrams X = Dgmp(f) and Y = Dgmp(g) is bounded from
above by the L∞ distance between the two functions, W∞(X,Y ) ≤ ‖f − g‖∞.

6. Topological Data Analysis

The setup for topological data analysis is this: Suppose we have a compact man-
ifold M , and we sample finitely many points uniformly at random off of M : call
the collection of these points S. Our question is if we are given S, can we estimate
M? What we do in topological data analysis is transform S in such a way that
we can find its homology, and use the homological features of S to say something
about the homological features of M . This is a better way to look at data because
homology is invariant under deformation, so skewing the data in some way will not
change its homology significantly.

The first question that immediately comes up is how do we find the homology of
a discrete set of points? Its homology is trivial if we do nothing to the data, so we
need to transform it somehow. The way we transform this data is we put a closed
ε-ball around each point of S, and take the union of all these ε-balls: we call this
S(ε). If we have enough points and the manifold is “nice” enough (positive reach),
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this ends up being a good approximation to the original manifold M . But we’ve
only talked about simplicial homology: how are we supposed to find the homology
of this object? Surprisingly, there is a way to do this with just simplicial homology.

We consider two simplicial complexes that can be formed from our set S: the
Čech complex and the Rips complex.

Definition 6.1 (Čech Complex). Let X = {x1, x2, .., xn} be a finite set of points
sampled from Rd and ε > 0. The Čech complex Čε(X) is the simplicial complex
with vertex set X and n-simplices the subsets x0, ..., xn ⊆ X such that

Bε(x1) ∩Bε(x2) ∩ · · · ∩Bε(xn) 6= ∅

where each epsilon ball is defined as Bε(xi) = {y ∈ Rd | ‖y − x‖ ≤ ε}.

The reason we define this is that we actually have a very surprising result with
the Čech complex:

Theorem 6.2 (Nerve Theorem). The homotopy types of X(ε) and Cε(X) are the
same.

It turns out that when two topological spaces have the same homotopy type,
they have the same homology groups. So if we want to find the homology of S(ε),
all we have to do is calculate the Čech complex and find its simplicial homology!
Unfortunately, the Čech complex is tough to compute. To tell whether there are
any 10-simplices you have to inspect all subsets of size 10. In general, computing
the entire Čech complex requires exponential run time in the size of X, which is
extremely slow. The next complex is not as precise, but is easier to compute.

Definition 6.3 (Rips Complex). Let X = {x1, . . . , xn} be a finite set of points
sampled from a compact subset of Rd. The Vietoris-Rips Complex or Rips complex,
Vε(X), is the simplicial complex with vertex set X and n-simplices the subsets
{x1, . . . , xn} ⊆ X such that d(xi, yi) ≤ ε, 0 ≤ i, j ≤ n.

Unfortunately, we don’t get the Nerve Theorem for the Rips Complex, as the
Rips complex and Čech complex are significantly different for similar ε values. What
we do get is a good approximation, because of the following containment:

Cε/2(X) ⊆ Vε(X) ⊆ Cε(X).

So what we have so far is that we can estimate the homology of M through S
by finding the homology of the Rips complex with S as the vertex set. But we
have a problem here: how do we pick the right ε that will be the closest to the
true manifold M? The solution is that instead of fixing an ε, we let ε vary and
compute the persistent homology of the resulting filtration. Specifically, if we define
dS : Rd → R by

dS(x) = inf
s∈S
‖x− s‖,

then d−1S (−∞, ε] = S(ε): that is, the sublevel sets of the dS function are the sets
S(ε). So we can form a filtration consisting of the sublevel sets of dS and compute
its persistent homology. Furthermore, we are guaranteed by the Stability Theorem
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for Tame Functions that if S(ε) approximates M well, then the persistence diagram
for dS will approximate the diagram for dM well.

7. Confidence Sets for Persistence Diagrams

In this section, we describe the method we used for quantifying the uncertainty
associated with the persistence diagram we get from our sample. The main tool we
use to compute these confidence bands is the hausdInterval function from the TDA
package in R. This function uses the method of sub sampling to compute a confi-
dence interval for the Hausdorff distance between a point cloud and the underlying
manifold from which X was sampled. By the stability theorem, this confidence
band for the Hausdorff interval is also a valid confidence interval for the persistence
diagram generated from the point cloud. The following theorem from [FLR+14]
proves that validity of this method.

Let b = bn be such that b = o( n
log(n) ) and bn → ∞. We draw N subsamples

S1
b,n, . . . , S

N
b,n each of size b, from the data whereN =

(
n
b

)
. Let Tj = H(Sjb,n, Sn),j =

1, . . . , N . Define

Lb(t) =
1

N

N∑
j=1

I(Tj > t)

and let cb = 2L−1b(α). Recalling the definition of ρ from (7) in [FLR+14],

Theorem 7.1. Assume ρ > 0. Then, for all large n,

P (W∞(P̂(X),P(X)) > cb) ≤ P (H(Sn,M) > cb) ≤ α+O

(
b

n

) 1
4

So the function called by hausdInterval will subsample m points Si from our
data S (without replacement) and compute the Hausdorff distance between the
original S and the sub sample. The result is a sequence of values Bi = H(S, Si).
Let q be the 1 − α quantile of these B values and let c = 2 ∗ q. The interval [0, c]
is a valid (1 − α) confidence interval for the Hausdorff distance between S and
the underlying manifold, as shown by Theorem 7.1. The function hausdInterval

returns the value c as just described and the confidence interval is [0, c]. What
makes the stability theorem so nice is it tells us the bottleneck distance between
diagrams is less than or equal to the Hausdorff distance between manifolds that
generate those diagrams. So once we have a confidence interval for a manifold we
have a confidence interval for the persistence diagram generated from that manifold.

8. Application to the Circle

In this section we use a simple synthetic example of a manifold in R2: namely,
the unit circle. Our ability to compute confidence bands for persistence diagrams
rests on the stability theorem, so we first verify the stability theorem and then
compute confidence bands for our example, all the while visualizing what we are
doing. First, we sample 500 points uniformly at random on the unit circle.

To represent noisy data that may be sampled from this unit circle, we will have
2 more data sets. For these data sets, we take points along the unit circle that are
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perturbed by a value taken from a normal distribution with mean 0 and standard
deviation 0.1 and 0.3, respectively.

Figure 3. Our samples of 500 points on the unit circle for no
perturbation, perturbation with sd=0.1, and perturbation with
sd=0.3.

Next we can use the TDA package provided in R to compute the homology of
these three manifolds and output the persistence diagrams.

Figure 4. The persistence diagrams for 500 points on the unit
circle for no perturbation, perturbation with sd=0.1, and pertur-
bation with sd=0.3.

In the diagrams, black circles represent changes in the 0th homology (connected
components) and red triangles represent changes in the 1st homology (1-dimensional
holes, like a circle). We say a topological feature is significant if it is far away from
the line y = x: i.e. it persists for a very long time. For the first two cases, it looks
like the diagrams show one connected component and one 1-dimensional hole that
are highly significant, since they are very far away from the line y = x. In the last
case, we only see one connected component and no 1-dimensional hole: the noise is
just too overwhelming and we lose that feature. We also see the noisy cases have
many features that are born and die quickly and fall along the line y = x: because
these features do not persist for very long, they are not usually significant topo-
logical features. In order to quantify which features are significant and which are
not, we will need to compute confidence bands for our diagrams. First, we verify
the stability theorem. For this we use only the first and second circles. As noted
earlier, the stability theorem when working in a Euclidean metric space simplifies
to the bottleneck distance between persistence diagrams must be less than or equal
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to the Hausdorff distance between the point sets that generated those diagrams.
So we first calculate the bottleneck distance between diagrams, then calculate the
Hausdorff distance between manifolds, and see if in fact the bottleneck distance is
less than the Hausdorff distance.

First we compute the Hausdorff distance between the two data sets. The TDA

package gives us a function called distFct that will compute the one way Hausdorff
distance between the data sets. In order to get the two way Hausdorff distance, we
use the distFct twice: we switch the parameters on the second one and take the
maximum of the two. The value we got was 0.40459, which makes sense since we
perturbed the first data set by a random value taken from a normal distribution
with mean 0 and sd = 0.1. The Hausdorff distance is meant to measure how far two
manifolds are from each other, and 0.40459 is about 4 standard deviations and a
good guess for the largest of those random values chosen from a normal distribution.

Next using the built in function bottleneckdist from the TDA package, we
find the bottleneck distance between the two diagrams to be 0.04871. Clearly
0.04871 ≤ 0.40459, so the stability theorem is satisfied. Now, we are all set to
compute confidence bands.

The method of computing confidence intervals we used relies on the stability
theorem, since it relies on the fact that the distance between any two persis-
tence diagrams will be less than or equal to the Hausdorff distance between the
sets that generate those diagrams. We bound our confidence bands between dia-
grams by the Hausdorff distance of the manifolds that generate them. Using the
subsampling method from [FLR+14], “we bound H(S,M) to obtain a bound on
W∞(P (S), P (M)). In particular we obtain a confidence set for W∞(P (S), P (M))
by deriving a confidence set for H(S,M)”. The TDA package gives us a built in
function to compute these Hausdorff intervals called hausdinterval, which out-
puts a value c. These intervals can be visualized by placing a box of side length
2c around each point on the diagram or by placing a band of width

√
2c around

the line y = x. If a point lies inside the region between the band and y = x, it is
considered noise and not statistically significant. For each diagram the respective
c values are as follows: 0.1311, 0.469, and 0.948. The diagrams below show the
previously computed persistence diagrams with the confidence band placed on top.

Figure 5. The persistence diagrams and confidence bands for 500
points on the unit circle for no perturbation, perturbation with
sd=0.1, and perturbation with sd=0.3.
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Just like we observed previously, what we find is there is one significant connected
component and one significant 2-dimensional hole for the first two diagrams, and
only one significant connected component for the third diagram. What can be
noticed though is that as the variance in the noisy cases increases so does the size
of the confidence band.
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